
C# > основни аритметични оператори и примерени кодове
 // 1. Деклариране на променливи

 int a = 10;

 int b = 3;

 double x = 10.0;

 double y = 3.0;

 // 2. Основни операции

 Console.WriteLine($"Събиране: {a} + {b} = {a + b}");

 Console.WriteLine($"Умножение: {a} * {b} = {a * b}");

 // 3. Специфики на делението

 Console.WriteLine($"Целочислено деление: {a} / {b} = {a / b}");

// Резултат: 3

 Console.WriteLine($"Реално деление: {x} / {y} = {x / y:F2}");

// Резултат: 3.33

 // 4. Остатък при деление (Modulo)

 Console.WriteLine($"Остатък от {a} / {b} е: {a % b}"); //

Полезно за проверка на четност

 // 5. Инкрементиране

 a++;

 Console.WriteLine($"Стойността на 'a' след а++ е: {a}");

Задачи за упражнение:

1. Сума на три числа: Напишете програма, която чете три цели числа от конзолата и
извежда тяхната сума и средно аритметично

2. Лице на правоъгълник: Въведете две страни (double) и изчислете лицето (a * b).
3. Четно или нечетно: Използвайте оператора % 2, за да проверите дали въведено

число е четно.

примерен код за комбинирани оператори += и *=
Комбинираните оператори (Compound Assignment Operators) съкращават изписването на
кода, като извършват аритметична операция и присвояване в една стъпка.

 int score = 10;

 Console.WriteLine($"Начален резултат: {score}");

 // Използване на += (еквивалентно на: score = score + 5)

 score += 5;

 Console.WriteLine($"След += 5 (добавяне): {score}");

 // Използване на *= (еквивалентно на: score = score * 2)

 score *= 2;

 Console.WriteLine($"След *= 2 (умножение): {score}");

 // Приложение с текст (Конкатенация)

 string message = "Здравей";

 message += ", Програмист!"; // message = message + ", Прог-ст!"

 Console.WriteLine(message);

1. Чистия код: Намалява излишното повтаряне на името на променливата.
2. Оптимизация: В някои езици и компилатори тези операции са малко по-бързи за

обработка.

Примерен код: Приоритет и Присвояване
 // 1. Оператори за присвояване

 int x = 20;

 x += 5; // x = 25

 x -= 10; // x = 15

 x *= 2; // x = 30

 x /= 3; // x = 10

 Console.WriteLine($"Крайна стойност на x: {x}");

 // 2. Приоритет на операциите (Precedence)

 // Правило: Умножение/Деление са преди Събиране/Изваждане

 int result1 = 5 + 2 * 10;

 Console.WriteLine($"Без скоби (5 + 2 * 10): {result1}"); //=25

 // Скобите имат най-висок приоритет

 int result2 = (5 + 2) * 10;

 Console.WriteLine($"Със скоби ((5 + 2) * 10): {result2}");//=70

 // 3. Комбиниран пример

 double complex = 10 + 20 / 2.0 * 3;

 // 1. 20 / 2.0 = 10.0

 // 2. 10.0 * 3 = 30.0

 // 3. 10 + 30.0 = 40.0

 Console.WriteLine($"Сложен израз (10 + 20 / 2 * 3): {complex}");

Кратка таблица на приоритетите
операторите се изпълняват в този ред:

1. Скоби () — променят естествения ред.
2. Инкрементиране/Декрементиране ++, --.
3. Умножение, Деление и Остатък *, /, %.
4. Събиране и Изваждане +, -.
5. Присвояване =, +=, *=, и т.н. (изпълняват се последни).

логически оператори (&& и ||)

Примерен код: Вход и Парсване
// 1. Използване на int.Parse() - бърз и директен метод

 Console.Write("Въведете вашата възраст: ");

 string inputAge = Console.ReadLine();

 int age = int.Parse(inputAge);

// 2. Използване на Convert.ToInt32() - по-безопасен при null стойности

 Console.Write("Въведете любимо число: ");

 int luckyNumber = Convert.ToInt32(Console.ReadLine());

// 3. Аритметика с получените данни

 int sum = age + luckyNumber;

 Console.WriteLine($"\nСлед {luckyNumber} години ще бъдете на

{sum}!");

// 4. Преобразуване към double за дробни числа

 Console.Write("Въведете цена на продукт (напр. 5,50): ");

 double price = double.Parse(Console.ReadLine());

 Console.WriteLine($"Цената с 20% ДДС е: {price * 1.20:F2} лв.");

Основни разлики:

• int.Parse(): Използвайте, когато сте сигурни, че входът е число. Ако потребителят
остави празно поле, програмата ще даде грешка (Exception).

• Convert.ToInt32(): Ако входът е null, този метод връща 0 вместо да прекъсва
програмата.

• double.Parse(): Важен е за финансови изчисления. Внимавайте с разделителя (точка
или запетая) в зависимост от регионалните настройки на Windows.

Задача за упражнение:

Създайте "Калкулатор за плочки": Потребителят въвежда дължина и ширина на стая

(double), а програмата изчислява лицето и добавя 10% резерв за фира, като използва +=.
Може да използвате int.TryParse(), за да не "гърми" програмата при грешен вход?

int.TryParse() е най-професионалният начин за четене на числа, защото предотвратява
срив (crash) на програмата, ако потребителят въведе текст вместо цифри.
Примерен код с TryParse
 Console.Write("Въведете цяло число: ");

 string input = Console.ReadLine();

// TryParse връща true/false и извежда резултата в променливата 'number'

 bool isValid = int.TryParse(input, out int number);

 if (isValid)

 {

 Console.WriteLine($"Успешно преобразуване! Числото на

квадрат е: {number * number}");

 }

 else

 {

 Console.WriteLine("Грешка! Въвели сте невалиден формат

(текст или празен вход).");

 }

Защо това е важно?

1. Защита от грешки: За разлика от int.Parse(), който спира програмата при грешка,
int.TryParse (Microsoft Learn) просто ни казва дали операцията е успешна.

2. Параметърът out: е ключовата дума out позволява на метода да "изнесе"
готовата стойност директно в променливата number.

3. Логическо мислене: Това е преход към условни конструкции (if-else).

Напишете програма, която изисква от потребителя да въведе количество стока.
Ако входът е валидно число, изпишете го.
Ако не е – изведете съобщение: "Моля, използвайте само цифри!".

Тест по C#: Вход/Изход
1. Какъв ще бъде резултатът от следния код?

int result = 10 + 5 / 2;

Console.WriteLine(result);

• а) 7
• б) 12
• в) 12.5

2. Кой оператор се използва за намиране на остатък при деление?
• а) /

• б) #

• в) %

3. Ако int x = 5; , каква ще бъде стойността на x след изпълнение на x *= 3 + 1; ?

• а) 16
• б) 20
• в) 19

(Подсказка: Сметнете първо израза след оператора за присвояване)
4. Кой от методите ще предизвика грешка (Exception), ако потребителят въведе празен
ред в конзолата?

• а) int.TryParse()

• б) int.Parse()

• в) Нито един от двата

5. Какво прави ключовата дума out в метода int.TryParse(input, out int

number)?

• а) Изтрива променливата от паметта.
• б) Показва резултата на екрана.
• в) Позволява на метода да запише преобразуваната стойност директно в

променливата.

задача, за напреднали да комбинират всичко до момента: приоритет, остатък от деление
и работа с Console.ReadLine().

Задача: „Машина за ресто“
Условие:
Напишете програма, която приема цяло число от конзолата – сума в лева. Програмата
трябва да изчисли колко най-малко банкноти от 50, 20 и 10 лева са необходими, за да се
изплати тази сума.
Логически подсказки за учениците:

1. Първо пресметнете колко банкноти от 50 лв. се съдържат в сумата (чрез деление /).
2. Вземете остатъка (чрез %), който остава след "вземането" на 50-левките.
3. Повторете същата логика за 20 и 10 лв.

Примерен код (Решение):
 Console.Write("Въведете сума за теглене (лв.): ");

 if (int.TryParse(Console.ReadLine(), out int amount))

 {

 // Изчисляваме банкнотите от 50 лв.

 int bills50 = amount / 50;

 amount %= 50; // Остатъкът след 50-левките

 // Изчисляваме банкнотите от 20 лв.

 int bills20 = amount / 20;

 amount %= 20; // Остатъкът след 20-левките

 // Изчисляваме банкнотите от 10 лв.

 int bills10 = amount / 10;

 amount %= 10; // Остатъкът (дребни монети под 10 лв.)

 Console.WriteLine("\nВашето ресто ще бъде в:");

 Console.WriteLine($"- Банкноти по 50 лв.: {bills50}");

 Console.WriteLine($"- Банкноти по 20 лв.: {bills20}");

 Console.WriteLine($"- Банкноти по 10 лв.: {bills10}");

 Console.WriteLine($"- Остатък в монети: {amount} лв.");

 }

 else

 {

 Console.WriteLine("Невалидна сума!");

 }

Извод защо тази задача е полезна?

• Реално приложение: Показва как математическите оператори се използват в
софтуер за банкомати или касови апарати.

• Критично мислене: Трябва да се разбере, че редът на пресмятане е от най-голямата
към най-малката номинална стойност.

• Упражняване на %: Това е най-добрият начин да разберат оператора за остатък в
практическа ситуация.

